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1.0 INTRODUCTION
At the urging of Jean Thiebaux and David Parrish of the
National Meteorclogical Center, 1l recently extended some simula-
tions reported on previously (see Franke, 1985) to include an
idea advanced by Bratseth (1986). The scheme proposed there is
an iterative scheme for objective analysis, similar to successive
carrection methads (SCM) (see Cressman (19259)), with the weights
chosen in such a way that the iteration converges to the results
of a statistical interpolation (SI) scheme (see Gandin (1963)).
This would appear to be attractive because of the ease of ap-
plying SCM and the skill of SI. The question that remains is
| whether or not the proposed scheme converges rapidly enough in a
practical setting to justify its use. The simulations described
in this report were close to realistic. Further investigation of
properties of the scheme give infarmation about why the method
performs as it does in the simulations and whether similar re-
sults can be expected in practice.

The second section reviews the ideas of Bratseth, and dis-
cusses a generalization of the scheme within the context of
iterative methods for scolving linear systems. In the third
section the results of the simulations corresponding to those

performed in Franke (1985) are presented with some conclusions.

Section 4 gives suggestions for further investigation. - Z tﬁ

2.0 THE BRATSETH METHOD 3

The basis for the method flows from the following ideas. RS
Let observation joints xl, i=t,...,n be given, and let Cij repre-— . -

sent the spatial covariance between the background plus observa- “”j;!
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tion errors at points x° and x

y while Cix represents the cova-
riance between the background errors at xi and x, the latter an
arbitrary point at which the background error is to be estimated.
Then the weights pj, j=l,y...4n, for the S5I correction at point x

are the solution of the equations

n
(1) Zc..p. =cC

j ix? i=1,...4n

with the analyzed values being given by

n

(tay F? = 7 « 5 o F9-FF) .

x X . 3 J
3=1

A F a .
Here Fi’ Fi’ and Fi represent the analyzed, predicted (back-
ground) , and abserved values at point xl, respectively, while Fs
and FS represent analyzed and predicted values at x.

Using SCM with the spatial covariance function as the weight

function yields the iteration

n
(2) FA(k+1) = FA(k) + 7 a »(thk)—Fe(k)) N
% X j=1 X J J

where a is c, ./M_. for some normalizing factor M_ ., which is
X)) X] X)) X))

typically taken to be

Cx.-
1 J

™3

J
Bratseth’'s observation is: 1f equation (2) is used to evaluate
the F?(k), instead of interpolating from the grid, then the
iteration given by (2) will converge (when it converges) to the
solution of (1), provided the ij’s are chosen independent of x.
This observation (in a limited sense), was also made by Franke
and Gordon (1983), where the ij's were all taken to be the same.

The key to analyzing the behavior of the iteration lies 1n

58]
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the iteration at the aobservation points, since the grid point

values (while being the real interest) have no effect on conver-
gence. In matrix form, the iteration for analyzed values at the
observation points has the form

) FPa+ = FRao + arPao-FPaon

where A is the matrix (aij/Mij)’ FO is the vector of abserved
values and FA(k) is the vector of analyzed values (kth i1teration)
at the observation points. The predicted values at the observa-
tion points (obtained by interpolation from the grid), FP, are
used as the initial iterate, FA(O). Since the values of ij are
to be chosen independent of x, denote them by Hj. Then A is of
the form A = CM, where C = (Cij) and M = diag(MJ).

Eratseth suggests (in our context of independent observation

errors)

The effect of this set of Mj's will be to ensure that the matrix
has all (absolute) column sums equal to one. This sﬁows that all
ei1genvalues of A are bounded by one, and since A is positive
definite, all eigenvalues are between zero and one. The itera-
tion matrix for the scheme is I-A, which is then seen to have all
eirgenvalues between zero and one, as well, ensuring convergence
of the scheme. The rate of convergence is proportional to the
largest eigenvalue of I-A, therefore when A has small eigenvalues
the convergence 1s slow.

Replacing the matrix A by A/« (equivalently, replacing the

MJ by aMJ) will result in a convergent scheme provided x lies

within certain limits as noted by Hratseth in another context,
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0<u—1<2. Let AJ represent the eigenvalues of A, in decreasing

order. Then, values of o greater than one will cause slow con-
vergence since the largest eigenvalue of 1-A/x will be l-xn/a>1—
An. Thus, to minimize the largest eigenvalue of 1-A/«, One

should take o to satisfy a = (Nn+xx)/2. Because of the unknown

properties of the associated eigenvectors relative to the error

1n the i1nitial i1terate, such a value will probably not be optimum

for a scheme which does not iterate to convergence. In any case,

computation of xl and L. 1s not feasible in practice. I also
note that as a parameter, a_l behaves much the same way as an
over-relaxation factor such as used in Gauss-Seidel and other

tterative schemes for linear systems of equations.

3.0 SIMULATION RESULTS

The basic simulations performed for a variety of objective
analysis schemes in Franke (1985) (see that paper for details of
the simulations) were conducted for =several variations of the
Bratseth method. Initial gquesses at the analyzed values were
obtained by piecewise cubic interpolation of predicted values
from the grid to the observation points. The parameters for the
Si1mulations were: SO0 mb height field (see koehler, 1979),
standard deviations of the error 1n the predicted and observed
values are 30 m and 10 m, respectively, and the assumed (and
true) correlation function for the predicted error was the 1so-
tropic negative sgquared exponential, exp(—(d/lD)z), where d 1s
distance 1n degrees. The results for the Bratseth scheme using
Ty 5, and 10 1terations, with o« = 1.0, 0.75, 0.65, and 0.5% are

given 1n Table 1.
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4
No. It. o« = 1.0 « = 0.75 «x = 0.635 o = 0,39 b
____________________________________________________________ ~
3 10.48 9.34 9.27 12.75 )
10.24(2.27) ?.13(1.97) ?.05(2.02) 11.921(4.57) y
S 8.82 8.04 7.77 9.80 «.
8.63(1.80) 7.892((1.39 7.62(1.53) ?.33(2.9% o
10 7.33 6.91 6.75 7.02 X
7.20(1.40) 6.79(1.31) 6.63(1.28) 6.88((1.39) by
o (=>01) 6.09 &6.09 6.09 6.09 b
5.98(1.19) 5.98(1.19) 5.98(1.19) 5.98¢(1.19 K
.
Table 1: RMS analysis erraors for Bratseth’'s scheme. This table N
corresponds to entries in Table 2, PW cubic column in Franke
(198%5) . Entries are: RMS analysis error ,
Mean RMS error (Std. Dev.) ‘
&
The table shows that (in this context) the scheme is less %
ski1llful than Barnes’' scheme for three iterations, while
additional 1terations and smaller values of o yield a scheme
which 15 more skillful than Barnes’' scheme. I¢ the iterations K,
are continued, the scheme converges to SI (0l here, since the
actual statistical properties have been assumed), however 1t 1s %
doubtful that more than 10 1terations would be cost effective 1n i
o

practice. Use of smaller values of o« are seen to be quite useful

for the early i1terations. In this case the smallest ei1genvalue

Caa 0

of A a1s AL 0.01, whereas Ay o= 1, which i1ndicates the optimum

value of « 1s close to 0.5 . However, RMS errars for a few
itterations tend to be larger when «w = 0.55, probably because the
decomposition of the error 1n terms of eigenvectors results 1n
larger components corresponding to xl, which 15 slowly damped 1+

« 15 near 1ts optimum value. Thus, the optimum value of u for a

J1ven number of 1terations 1s somewhere between the theoretical

A et e e

optimum and «=1. Note that for 2 i1terations, the RMS errars with

4




« = 0.75 and «x = 0.65 are nearly the same, while for « = 0.55 the
error is larger. As the iteration count increases, faster
convergence rates occur for the smaller values of «.

Table 2 shows something of the the sensitivity of the scheme
to misspecification of the ratio between prediction and
observation errars. The set of realizations was different here
than for those that made up Table 1, which accounts for column 1
of Table 2 differing from column 3 of Table 1. The rate of
convergence seems to be improved slightly here, although the

performance of SI is deteriorated.

YRVANFICERANAANATANARRE & NER

8.21(1.65)

8.05(1.864)

No. 1It. o = 0.65 rglie=20 rolie=5
3 %.88 ?.59 ?.69
?.67(2.05) 9.34(2.21) 9.50(1.93)
S 8.37 8.26 8.21

8.04(1.67)

10 7.30 7.24 7.12
7.16(1.45) 7.07(1.57) 6.97(1.44)

@ (=>51) 6.40 &.47 6.88
6.271.30) 6.32(1.35) 6.74(1.38)

Table 2: RMS analysis errors for Bratseth s scheme. This table
corresponds i1n part to Figure 13, Franke (1985). Nominal values
of r and r_ were 20 m and 10 m, respectively, while the analysis
was diven 20 m and S m, respectively for columns 2 and 3.
Entries are: RMS analysis error
Mean RMS error (Std. Dev.).

Hased on these simulations, 1t 1s not clear that the method
1s superior tao a highly tuned version of Barnes' scheme, for a
r 2isonable number of iterations. Sensitivity to misspecification
ot the correlation function was not investigated, but this can be

expected to be similar to that of statistical interpolation since

the scheme converges to the SI approximation.
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4.0 FURTHER THOUGHTS

The analysis of iterative methods for linear systems reveals
that the cbmponents of the error vector corresponding to large
eigenvalues of the iteration matrix are most slowly damped. The
large eigenvalues of I-AR/u« correspond to the small eigenvalues of
A in the present discussion. The eigenvectors corresponding to
small eigenvalues tend to have "spikes" at a few of the
observation points. Because of this it is possible that the
errors left after a finite number of iterations correspond to
components which will be damped out during the initialization
phase, prior to beqginning the numerical integration of the
dynamical equations in NWF. Thus, 1t is possible that in a
practical setting the performance of the Bratseth scheme may be
much better than indicated by the raw RMS errors shown in Table
1. Whether or not this is the case will probably be quite
difficult to determine without commitment of significant

resources to conduct full scale verification runs.
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